Analog-Kalman filter based postprocessing of surface PM2.5 predictions from the Community Multiscale Air Quality (CMAQ) model.

James Wilczak¹ Irina Djalalova^{1,2} Luca Delle Monache³

¹ National Oceanic and Atmospheric Administration/Earth Systems Research Laboratory (NOAA), Boulder, Colorado

² University of Colorado Cooperative Institute for Research in the Environmental Sciences (CIRES), Boulder, Colorado

³ National Center for Atmospheric Research (NCAR), Boulder, Colorado

Why use post-processing for air quality predictions?

- Virtually all weather forecast information widely disseminated to the public has some type of postprocessing applied to raw model output. This is true for precipitation, temperature, humidity, etc.
- Post-processing works especially well when model forecasts have large biases.
- Historically, no post-processing has been applied to NOAA's AQ forecasts.

OUTLINE

- Data set and quality control procedure for surface PM2.5 observations;
- Model post-processing at each observational site using historical forecast analogs;
- Spreading the forecast correction over the entire gridded domain.

OUTLINE

- Data set and quality control procedure for surface PM2.5 observations;
- Model post-processing at each observational site using historical forecast analogs;
- Spreading the forecast correction over the entire gridded domain.

EPA active 716 sites. Only 570 (blue) sites with at least 80% data available throughout the year of December, 2009 – November, 2010 were used.

PM_{2.5} QUALITY CONTROL

- **Constant value data**. By this method the data of one single day is checked. If MIN(PM)=MAX(PM) than the whole day is eliminated.
- The data over 500 μg/m³ threshed.
- Single hour spike: if (PM[hour]-PM[hour-1] > 50 μ g/m³ and (PM[hour]-PM[hour+1] > 50 μ g/m³
- 3-hour averaged spike:

if MEAN(PM[hour-1,hour,hour+1])-PM[hour-2]>100 $\mu g/m^3$ and MEAN(PM[hour-1,hour,hour+1])-PM[hour+2]>100 $\mu g/m^3$

 Histogram check if histogram has an empty window. For low PM (MAX(PM)<200 μg/m³) an empty window >= 50 μg/m³.
For high PM (MAX(PM)>200 μg/m³) an empty window >= 100 μg/m³.

OUTLINE

- Data set and quality control procedure for surface PM2.5 observations;
- Model post-processing at each observational site using historical forecast analogs;
- Spreading the forecast correction over the entire gridded domain.

2009-2010 CMAQ Model:

- aerosol module version 4 (AERO-4)
- Carbon Bond Mechanism version IV (CBMIV) gas-phase chemical mechanism
- Sparse Matrix Operator Kernel Emissions (SMOKE) emissions

Monthly PM_{2.5} Bias

Analog Method

REFERENCES:

Delle Monache et al., 2011, Monthly Weather Review, 139, 3554–3570.

Delle Monache, Luca, F. Anthony Eckel, Daran L. Rife, Badrinath Nagarajan, Keith Searight, 2013: *Monthly Weather Review*, **141**, 3498–3516.

MAE

CORRELATION

Statistics for Raw model, persistence, plus 5 p-p methods, averaged over the month of November 2010 with the rest of the year used as the training period. Methods from left to right:

- 1 raw model;
- 2 persistence (at the same hour one day previously);
- 3 7-day running mean;
- 4 KF Kalman Filter with recent days weighted more heavily;
- 5 KFAS a Kalman Filter in analog space using ordered model PM analogs;
- 6 AN Analog Ensemble using weighted ensemble mean of 10 best analogs;
- 7 KFAN a Kalman Filter applied to the AN time series;

Analog Sensitivity to Meteorological Variables

MAE

CORRELATION

PM_only PM/WindDirection PM/SolarRadiation PM/Temperature PM/Wind(Speed&Direction) PM/Temperature&SolarRadiation PM/ Temperature&SolarRadiation&Wind(Speed&Direction)

Analog Sensitivity to Meteorological Variables

MAE

CORRELATION

PM_only PM/WindDirection PM/SolarRadiation PM/Temperature PM/Wind(Speed&Direction) PM/Temperature&SolarRadiation PM/ Temperature&SolarRadiation&Wind(Speed&Direction)

MAE Sensitivity to Number of Analogs

Analog numbers	3	5	10	20	30
VEAS	1 0 1 6	1 0 1 6	1 0 1 6	1 0 1 6	1 0 1 6
KFAS	4.946	4.946	4.946	4.946	4.946
AN	4.415	4.311	4.234	4.266	4.289
KFAN	3.446	3.247	3.064	2.961	2.919

MAE Sensitivity to Number of Analogs

Analog numbers	3	5	10	20	30
ΚΓΔς	4 946	4 946	4 946	4 946	4 946
	4.540	7.570	4.540	4.540	4.940
AN	4.415	4.311	4.234	4.266	4.289
			\frown		
KFAN	3.446	3.247	3.064	2.961	2.919
			\smile		

PM2.5 Diurnal Cycle At Obs Sites

PM diurnal cycle, averaged for the month of November and all 570 sites.

November 2010 Hourly Data

MAE Improvement of Large Errors

Monthly Statistics

OUTLINE

- Data set and quality control procedure for surface PM2.5 observations;
- Model post-processing at each observational site using historical forecast analogs;
- Spreading the forecast correction over the entire gridded domain.

AIRNow Site Corrections

Example data from 12 Nov 2012, hour 15

OBS – CMAQ_RAW

CMAQ_KFAN – CMAQ_RAW => Forecasted bias

Spreading Method

- To create graphical images of corrected CMAQ PM2.5 forecasts, the forecasted bias calculated at each AIRNow obs location must be spread to every model gridpoint.
- An iterative objective analyses method is used which starts with a very large radius of influence (R=2000km).
- Sbias_k = CMAQ_KFAN_k CMAQ_RAW_k, Mbias_{i,i} = 0
- At each grid point the correction value is calculated as

$$C_{i,j} = \frac{1}{n} \sum \frac{R * R - d * d}{R * R + d * d}$$
 (Sbias_k-Mbias_{i,j}), d

R is radius of influence;

d is the distance from a grid point to the site k inside the circle R;

C_{i,i} is the correction at a grid point;

 $Mbias_{i,j} = Mbias_{i,j} + C_{i,j}$

Summation is done over ALL obs sites k inside the circle R.

• 8 passes with R=2000, 1000, 500, 250, 125, 62, 31 & 15 km are used.

Spreading technique based on Glahn et al., 2012

MAXgrid=9.10 MINgrid=-34.77 MEANgrid=-7.28 MAXsites=40.72 MINsites=-141.13 MEANsites=-12.32

MAXgrid=21.53 MINgrid=-47.74 MEANgrid=-7.06 MAXsites=40.72 MINsites=-141.13 MEANsites=-12.32

MAXgrid=39.57 MINgrid=-140.19 MEANgrid=-6.99 MAXsites=40.72 MINsites=-141.13 MEANsites=-12.32

MEANsites=-12.32

24 hour Averaged PM2.5 Concentrations

CONCLUSIONS

- Automatic quality control procedures have been developed to eliminate spurious measurement values. This technique could be used in realtime operational CMAQ model runs.
- Implementation and evaluation of several post-processing biascorrection techniques has been completed. It is found that the KFAN approach that first searches for analogs and then applies the Kalman filter has the best overall skill.
- Although a significant improvement is found when using analogs based only on PM_{2.5}, combining PM_{2.5}, temperature, solar radiation, wind speed and direction together gives the most accurate analog forecasts.
- A technique has been developed for interpolating the station corrected model forecasts to the entire CMAQ grid.